B.Sc. (Honours) Part-II
Paper-I11A

Topic: Solid State- Braggs Law & Co-
ordination Number

UG
Subject-Chemistry

Dr. Laxman Singh
Asst. Professor
Department of Chemistry
R.R.S. College (PPU)
(Mokama, Patna)



Atoms, molecules or wons are too small to be seen with naked
eye. The amangement of particles im crystalline solids is
determined indirectly by X-ray diffraction. In 1912, Von Lauwe
showed that any crystal could serve as a three-dimensional
grating to the incident electromagnetic radiation with wavelength
approximately equal to the internuclear separations (= 107% em)
of atoms in the crystal. Such radiation is in the X-ray region of
the electromagnetic spectrum. )

The apparatus used 15 shown in Fig, 4.28. A monochromatic
X-ray beam is directed towards the surface of a slowly rotated
crystal so as to vary the angle of incidence 8. At various angles,
strong beams of deflected X-rays strike the photographic plate,
The photographic plate after developing shows a central spot due
to primary beam and a set of symmetrically disposed spots due to
deflected X-ravs. Different kinds of crystals produce different
afrangements of spots.

Cryatal <
Fig. 4.28 . X-ray diffraction of crystals

In 1913, Bragg found that Laue photographs are more easily
interpreted by treating the crystals as a reflection’ grating rather
than a diffraction grating. Fig. 4.29 illustrates the way by which
the crystal spacings can be determined by use of X-rays of a
single wavelength, A. The rays strike the parallel planes of the
crystal at angle 8. Some of the rays are reflected from the upper
plane, some from the second and some from the lower planes. A
stromg reflected beam will result only if all the reflected rays are
in phase, The waves reflected by different layer planes will be in

Fig. 4.29 X-ray reflection from crystals

phase with one another only if the difference in the path length of
the waves reflected from the successive planes is equal fo an
mtegral oumber of wavelengths, O and OM  arc  the
perpendiculars drawn to the incident and reflected beams. The
difference in path lengths of waves deflected from the first two
planes iz given by:

LN + NM=nh (n=1,23,...)

Since, the mangles OLN and OMN are congruent, hence
LN = NM.

So, Path difference = 2LN
a8 LN = d sin 8 where, 4 is the distance berween two planes.
So, Path difference = 24 sin @

When two reflected waves reinforce each other (maximum
reflection), the path difference should be =nd (where,
n=1L23. .. '

%o, for maximum reflection,
mh = 2d sin @

This relation is called Brage's equation. Distance between two
successive planes  can be calculated from this equation. With
X-rays of definite wavelength, reflections at various angles will
be observed for a given set of planes separated by a distance d.
These reflections correspond to n=1,2,3 and so on and are
spoken of as first order, second order, third order and so on. With
each successive order, the angle 8 increases and the intensity of
the reflected beam weakens.

The values of 8 for the first order reflection from the three
faces of sodium chloride crystal were found to be
597 ,8.4° and 5.2° respectively. As » and ¢ are same in cach
case, the distance d between successive planes in three faces will
be in the ratio of

[ B |
sin 5.9° sin 8.4° sin 5.2°

=9601:6.84: 11.04

=1:0.70:1.14
el 2
G

This ratio corresponds fo spacings along the three planes of a

-fage-centred cubic structure, Thus, the WaCl crystal has

face-centred cubi structure.

 Example 63, X-rays of wavelength | 54 gitrike a crysial
and are observed ta be deflected ar an angle of 22.5°. Assuming
that i = 1, calculate the spacing between the planes af atoms thai
are responsible for this reflection. '

Solution:  Applying Bragg's equation,
nh=2dsin@
Given, n=1 A=1544, 8=225°
Using relation  ni = 2d sin 8,
_ a..l.54 - 1.54 _201A
25im 22,57 2% 0383

Example 64. The first order reflection of g beam af X-rawvs
o{ wavelength 1.54 4 from the (100) face of'a crvstal of the simple



cubic type occurs at an angle of' 11.29% Caleulate the length of

the wnit cell,

Solutibm: Applying Bragg's cquation,
2d sin @ = nd

Given,8=11297, n=1, A=154A4 =154 %107% em

i %
- LMxI0 _134XI0T 5 03107 om
2xsn 11295 2x0.1957

a —
Jh ik 41t

a=393x10" cm=

dhu = i

length of the unit cell

Example 65, When an electron in an excited stare of Mo
atom fills from L to K-shell, an X-ray is emitted. These X-rays are
diffracted at angle of 7.75° by planes with a separation of 2.64 A,
What is the difference in energy between K-shell and L-shell in

Mo, assuming a first order diffraction (sin 7.75% = 0,1349y
Solution: According to Bragg's equation;
nh = 2d sin B
Ixh=2x2hdsin 7.75% = 2x 2 64 x0.1349
h=07124

Energy difference between K and L-shell of Mo
6.626x 107 x 3% 10°

T =2791x10"" J
T12% 107

he
M

421 ANALYSIS OF CUBIC SYSTEMS

The following characteristics are reflected by cubic systems
when analysed mathematically;

(i) Atomic Radius

1t is defined as half the distance between nearest neighbouring
atoms in a crystal. It s expressed in terms of length of the edge
‘a" of the unit cell of the erystal.

{a) Simple cubic unit eell : In a

simple cubic unit cell, atoms at the L o8
corners touch each other along the edge. -
Distance  between the  nearest
neighbours,
d=dAB=a=2r
{where r = radius of the atom) Fig. 4.30
or  Atomic radius, Simple cubic unit cell
[}
r===1003a
2

(b} Body-centred cobic omit
cell : The distance between the
twa nearest neighbours is repres-
ented by length AE or ED, ie,

half of the body diagonal, AD.
d=AE=ED=2D
Fig. 4.31
In A ABC, -

" Body-centred cubic unit cell

ACY = AR +BC =0t +a? = 247
or AC=+2a
Mow, in A ADC,

AD* = AC* +CD?

=(v2a) +a* = 3a°

ar ,{D=-ﬁa
3
—a
2 —

d'=2r=£a
2

d

h

or Atomic radius, »= Tj a

{c) Face-centred cubic unit cell 2
: The distance between the two B D
nearest neighbours i3 represented 1 ¥C
by length A8 or BC, L e, half of the - +
face diagonal, AC.

d=dAF= EC-%

Fig. 4.32
In AACD, AC* =CD? + 4p*  Face-centred cubic unit
o cell
=g° +a® =2t
AC=42a
_Ac -u"_ aely

N

ar

d:!rn—la

V2

r——a

22
(i) Mo. of Atoms Per Unit Cell
Drifferent types of cubic unit cells are given in following figure:

or Atomic radius,

148 atam 1 atom 172 atom
Simple cubic Body centrad cubic  Face centred cubic
i) i} {c)

Fig. 4.33 (a) Simple or primitive cubic iattice;
{b) Body-centred cubic Iattice; {¢) Face-centred cubic lattice



(a) Simple cubic structure: Since, each comer atom is
shared by eight surrounding cubes, therefore, it contributes I'cur%t

of an atom,

Thus, for simple cube = § x-—; = | atom per unit cell

(b} Face-centred cubic structure: Since, the structure
possesses § comer atoms and six at the centre of each face, the
contribution will be

=Ex%+ ﬁx—; (Face atom is shared by two cubes)

= |+ 3= 4 atoms per unit cell
(¢) Body-centred cubic structure: Since, the structure
possesses 8 comeT atoms and one body-centre, the contribution

will be = 8= é + 1= 2atoms per unit cell.

{iif} Coordination Number

It is definedas the number of nearest neighbours that an atom
has in a unit cell. Tt depandsupon structure.

() Simple cubic strgeture: Coordination number = &
(b} Face-centred cubic stracture: Coordination number =12
{c) Body-centred cubic structure; Coordination number = &
{iv) Density of Lattice Matter
Knowing the unit cell dimensions, the theoretical density of a
crvstal can be calculated as:
Mass of unit cell

Drensity of the unit cell =
Volume of the unit cell

Masz of the unit cell = number of atoms in the unit
cell # mass of each atom

Atomic mass M
Avogadro’ s number h ;"T.;.
ExM _ mxM

i Ny xa’
where, Z 15 the number of atoms in a unit cell and F 15 the volume
of unit cell.

Faracubel = o where, ais the edge length of the cubic unit
cell.
(¥ Packing Fraction or Deasity of Packing

It is defined as the ratio of volumes occupied by atoms in unit

cell to the total volume of the unit cell.
Packing fraction = Volume occupied by atoms in unit cell b
Total volume of the unit cell ¥

{a) Simple cubic structure: Let a be the cube edge and »
the atomic radius.
¥ = valume of the unit cell = a”
Since, one atom 15 present in a unit cell, its

Mass of each atom=

%0, density of a unit cell = (For a cube)

"v.l'i;lnh.n'n.r:,Ll=—:|1r3 (r=a/2}

3 3
o=

| B |

|

3
L
ma —= T_0s2
a’ o
L, 52% of the umit call 15 occupied by atoms and 48% 15 empty.
(b) Face-centred cubic strgeture: Since, four atoms are
present in & unit cell, their volume is

t.f=4><[§m-}j

Putting the value of r= L ,

Packing fraction = L

3
U;Eﬂ[LJ g
3 la2) W2
Volume of unit cell, ¥ = a*

i , Ta n
Packing fraction a3 074
ie., 74% of unit cell is occupied by atoms and 26% is empty.
. {e) Body-centred cubic structure: Since, two aloms are
present in a unit cell, their volume is
=2 [i m-lxl
3 )

A
Putting the valucnfr=£ i, ‘u’=21inx {Ea
4 3 4 )

i d?

B
Valume of unit cell, ' =a*
3
Packing fraction = \I"EII: a . ﬁ = (168
8a’ 8

i. e, 68% of the unit cell is occupied by atoms and 32% is empty.

Characteristics of cubic unit cells are summerised in following
tahles

Fate-

Wolume, conventional eell a a* o’
Lattice points per cell . | 2 4
Volume, primitive cell o %;;3 ‘lﬂl
Lattice points per unit volume 1/d 2ia 4/d
Mumber of nearest neighbors i & 12
Mearest-neighbor distance a gz | aiat?
= 866a |= 07070
Mumber of second neighbors 12 & ]
Second neighbor distance 2" a @
i ] 1 1 1
Packing i_‘mlmn " E,H'j " 2
= (524 | = (680 | =0.740




Hexagonal Unit Cell

Let us consider hexagonal unit cell of height A" its
constituent units are spherical having radius *r°.

a=2r

o

£
L]

h=4x"~|r%r

Flg. 4.34 'I-I-:mﬁnnal unit cell
Mumber of constituent units in the hexagonal unit cell = &

Thus, oecupied volume in the unit cell = 6:{% nr?

Volume of unit cell = Area of base » height
= 6 Area of equilateral triangle = height

=ﬁxﬂa: wdr E
4 V3

=6x£{2r}3x4rF
4 3

(Height of the unit cell can be calculated peometrically)

: occupied volume
Percenta; ed space= —————
e pocoet i volume of unit cell
6% 2
= 3 x 100= 74.06%
ﬁ‘ﬁ : \f
— (2r)* xdr =
4 3
11328 WSOME S0LveD ExaMPLES) $8e: : -

" Example 66. A compound formed by elements A and B
crvstallizes in cubic structure where A atoms are at the corners of
a cube and B atoms are af the foce-centre. What ix the formuila of
the compound.?

Solution:  An atom at the comer of the cube contributes I to
the umit cell. Hence, number of atoms of 4 in the unit cell
=8x =1

Ari atom at the face of the cube contributes }{ to the unit cell.
Hence, number of atoms of B in the unit cell = 6% 4 =3,

Thus, the formula is A8,

' Example 67. At room temperature, sodium crystallises in
body-centred  cubic lattice with a=4.24 4 Caleulate the
theoretical density of sodinm (AL mass of No = 23.0).

Solution: A body-centred cubic unit cell contains 8 atoms at
the B corners and | in the centre.

Hence, .

Total number of atoms inam'lj'tccll=3x—;+1=1

=]

Volume of unit cell = a® = (4.24 x 107* )' ¢m’

So, Density = — M = 2x 23
' Np =V (60232107 {424 107y

=1.002gem™

- Example 68. The density of KClis | 9893 g cm™ and the
length of a side of unit cell is 6.29082 A as desermined by X-ray
diffraction. Calenlaie the value of Avogadre 5 number

Solution: KCl has face-centred cubic structure,
Lé, £=4
Zx M
dxV

Avogadro” s number =

Given that, d = 1.980% M = 74.5 ¥ = (6.20082 % 107 }* em’

4x745

Avogadro’ s number =
1.9803 % (6.20082 x 107% )

= 6,017 = 107

.Eni‘ll]:le 69, Silver crysiallises in a face-centred cubic
‘wnir cell. The density of Ag ix 105 g cm™ . Caleulate the edge
length of the unit cell.

Snlutlgu: For face-centred cubic unit, £ = 4.

L= M
No=d
B 43 108
(6.023% 10% = 10.5
=68.3% 107

Let 2 be the edge length of the unit cell.
Sa, V=g
a’ = 68.3x 107
a=(68.3x 10 em
=4.09% 107 cm
) = 409 pm
oo Exdmple T8, An element occurs in bec siructure with a

cell edge of 288 pm. The density of metal is 72g cm™. How
miny atoms does 208 ¢ of the element contain?

Solution: Volume of the unit cell = (288 1077 )?

We know that, V=

*

=683x 1078

ar

=239x 107" em’

Volume of 208 g of the element = %%f =28 88 cm’

28.88
23.0% 1079

= 12,08 % 10" unit cetls
Each bee structure containg 2 atoms,

Mumber of unit cells in 28.88 cm” =



So, Total atoms in 12.0% 3 10°% unit cells
=2 12.08 % 107
=24,16x 109

" Example 71, Lithium forms body-centred cubic crystals.
Calealate the atomic radius of lithium ifthe length of the side of'a
unit cell of lithium is 351 pm.

Solution: In body-centred cubic crystals,

NE

F=—2ua
4

Y3 . 351pm=151.98 pm

Example 72.  Ammonium  chioride  crsiallises in @
bady-centred cubde lattice with a unit distance of 387 pm.
Calcwlare (a)ohe distance hetween ﬂppasit‘e}y charged fong in .rhe
lattice gnd () the radius of the NH ILI‘J'J if the radius of O~

fs 18] pm. )

Solution: (2) In a body-centred cubic lattice, oppositely
charged 1ons touch each other along the cross-diagonal of the
cube.

Se, 2r 42 =432
ar - Lt = ﬁ
: 2
= %x 387=133515pm
{b) Given that, r, =181 pm
ro=33515- 181.0= 154.15pm
Example 73.  The unit cell cube length for LiCH (NaCl

structure) i 514 A, Assuming anion-anion contact, calewlate the
anie radiug for chioride fan.

Selution: In a face-centred cubic lattice, anions touch each
other along the face diagonal of the cube,

-1:;__[_ =+2a
J2
r(:l' = T i
= ﬁxs.u =1.824-
4
Alternative: Distance between Li* and C1™ ion
=31 a5 o
2
Thus, distance between two chloride ions g
= J(2.57F +(2.57)° >|
+:
1634 iy
Hence,
radius of C1” :-3-‘_:?3= 182 A

Example 74.

The density of erystalline sodium chioride is
2,165g em ™,

What is the edege length of the wnit cell,

What would be the dimensions of cube containing one mole of
NaCl?

Solution: We know that,
' N[ M
==~
a N,j _
where, pp = density = 2.165 gem™

M = molar mass =58.5 .
N, = Avogadra’s number = 6.023 x 107 -

N = number of formula unit per unit cell
=4 (for foc)

SN M] 4 585 |
pLN ) 2165 6.023x107 |

= 1.794 % 1072
a=564%10" em

Molar mass - 588

Density - 2165

ITk]
588 -| .=3cm
2165
Example 75, The density of potassium bromide crystal is

T em™ and the lengrth-of an edge of a unit cell is 654 pm. The
unit cell af KBr is one of three types of eubic unit cells. How many

Sormuda uniis of KBr are there i a unit cell? Does the wnit cell
have a NaCl or CsCl structure?
Solution:  We know thar,
b [£1
-ﬂ'l N_.q JI
yopxa XN,
M
- ~li 3 L
_275x (654 x107"")" %6023 s 189=4
19
MNumber of mass points per unit cell = 4
Itis Na_CI type crystal, i.e., foe struchure.

Example 76. A unit cell of sodium ehloride hos fonr
Jormula units: The edge length of wnit cell is 0,564 nm. What is
the density of sodium chioride? (T May 1997)

4 58.5
Solution: p=_Z|3H =— >-:1 ;
a'N o (564 %1075 % 6,023 % 10°

Muolar valume =

Edge length {aj=[

=216gcm™

Example 77. Chromivm  metal  crpstallises with @
body-centred cubic lattice. The length of the unit cell edge is
Jound ro be 287 pm. Calewlate the atomic rading. Whar would be.
the density of chronium in gf'cml ? T July 1997y



" Solution: In body-centred cubic unit cell,

ad3 =4r

where, a = edge length, r= radius of atom

_af3_3x429
4 4

Example 7T8. When heated above 916°C, iron changes its
crystal structure from body-centred cubie to cubic closed packed
structure. Assuming that the metallic radius of the atom does not
change, calcilate the ratio of density of the bec erystal to that of
© the ecp a;m‘m’

Solution: In body-centred pncking, the efficiency of
packing is 67.92%, In the cubic c]qmd packing, the packing
efficiency is 74.02%.

Let d, be the density when packing :ﬁ'clcncy is 74.02% and
dy is the dq:n.nt_-,' when packing efficiency is 74.02%.
Cody 6792

—=——=0918
d, 7402

= 18574 A

ILLUSTRATIONS OF OBJECTIVE QUESTIONS
3.

An ¢]=m£nx ‘A" has face-centred cubic structure with edge
length equal to 361 pm. The apparent radius of atorn “4" is:

(a) 127.6 pm {b) 180.5 pm
{c) 160.5 pm - {d} 64 pm
[Ans. {a)]
[Hint: For face-centrad unit cell,
s
161 %1414 '
T e—— =
4
r=1276pm]

3L Th:: packing fraction of the element that crystallises in slmpll:
cublc arran;g:nnnt Y

f n
[Ans. (B)]
[Hint: In simple uoit cell a = 2r
£=1 _
i Occupbed volume
g e = ™ Total volume
4 4 '
3V 3%
i o (2 6

3z Huw many unit cells are present in 39 g of potassium t]lzt

crystallises in budyml:md cubic structure?
DN,

{h}— 05N, 075N, -
(Ans. (c]) : .
[Hist: * Nurnber ofstoms = — 8 v
. Atomic mass
39

s—xN,/=N
39._ A A-

In bec unit eell, Z=2

Mumbser of unit cells =%= 0.3N,]

33, Sodiurn metal exists in bee unit éell. The distance igmﬁm
nearest sodium atoms 18 0.368 nm. The edge length of the

unit eell is: )
{a) 0.368 nm (1) 0.184 nm
(c) 0.575 nm (d) 0.424 nm
{Ans. {dj]
[Hint: In bec unit cell, w3 = 4r
- ar =i ®2r
43

2
= % 0368 = 0425 nm
W 1

If the distance between Ma™ and €1~ ions in MaCl crystal is
265 pm, then edge length of the unit cell will be?

34,

(2)265pm (b)530pm  (c)795pm  (d) 132.5 pm
[Ans. (b))
[Hint: In MaCl:
" . Edge length = 2 x distance between Ma™ and C1 ™ jons
=2 x 265 = 530 pm]

35, The interionic distance for caesium chloride crvstal will be:
[P (VP 2007 |

a ::\E 2a
(a)a () n (<) e (d) ?5
[Ans. (c]]
4.22 PACKING OF lDEN'I'ICA.L SULID \
SPHERES '

The constituent pa.rtml:s in the l‘mm‘uu’m of crystals are either
atoms, iens or molecules. These particles may- be of various
shapes and thus, the mode of packing of these particles will

_ change according to their shapes. The simplest way will be

consider these particles as spheres of equal size. The packing of

" spheres 15 done in such a way as to use the available space in the

most economical manner.

Arrangement (1) Arrangemeant (i)
Fig. 4.35 Two commion ways of packing spheres
of equal size

There are two common ways in which spheres of equal size
van be packed. This hus been shown in Fig. 4.35. The
arrangement (i) is more economical in  comparison 1o
arrangement (ii) a5 60.4% volume is occupied in arrangement (1)

and 52.4% volume in arrangement (). Arrangement (1)

represents.a close packing of spheres,



In arrangement (i), the spheres are packed in such a manner
that their centres are at the comers of an equilateral triamgle. Each
sphere is surrounded by six other similar spheres as shobn in Fig.
4.36. This arrangement can be extended in three dimensions by
adjusting spheres on the top of hollows or voids of the
two-dimensional layer which is called the first layer or ‘4" layer.
There are twa types of hollows in the first layer which have been
marked by dots () and cross (=) All the hollows are equivalent.
The spheres of the second layer may be put either on hollows
marked by dots or by crosses. Half of the hollows remain
unoccupied n the second layer (Fig. 4.37). The second layer 15
marked as ' B” layer, The spheres have been placed on the hollows
marked by dots.

Threa spheras

at the comers Six spheres
of ap equilateral surrounding
trimnghe & sphere

Fig. 436 Close packing of spheres

Fig. 437 Building of second layer (B, shown shaded)
covering hollows marked by dots (« ). The
hellows marked by a cross (<) unoccupled

T build up'the third layer of spheres, there are two alternative
ways. In the first way the spheres are placed on the hollows of
second layer. 1t is observed that each sphere of third layer lies
exactly above the spheres of first layer. When this arrangement is
continuad indefinitely, the system obtained. is found to possess
hexagonal symmetry and is called hexagonal close packing of

(E;i fold axia

:

¢

Fig. 438 ABABAR...or hexagonal close packing (hep) o
spheres

*

spheres and is abbreviated as hep or ABABAR . . . This is shown
in Fig. 438. In the second way, spheres are placed on the

. unoccupied hollows of the first layer, marked by ‘crosses’, It is

observed that spheres of the third layer do not come over those of
first layer. This armangement of close packing is referred to as -
ABC. However, it is noted that spheres in the fourth layer will
correspond  with those in the first layer. When such an
arrangement 15 continued indefinitely, the system is found to
possess cubic symumetry and called cubic close packing of
spheres and is abbreviated as ccpor ABCABC ... This is shown
in Fig. 4.39, The system ABCARC ... shows that there is a sphere
at the centre of each face of the unit cube and thus, this system is
also referred to as face-centred cubic or fee. )

Threse-fold

= m 0O O @ O

1a)
Fig. .39 ABC ABC A . : . or cubic close packing (ecp) of

(B

spheres

[t is noted that in both the above systems
hep or cep, each sphere is surrounded by
twelve other spheres shown in Fig. 4.40,
There is a third arrangement of packing of
spheres which is known as body-centred
cubic arrangement (bee) This arrangement
15 obtained when the spheres in the first
layer are slightly opened up, i & ,none of the
spheres touches each other. In the second
layer, the spheres are placed at the top of
hollows in the first layer. In the third layer,
spheres are placed exactly above the first
layer, Each sphere in this system of packing

00

N
‘00

is in contact with eight spheres, four in the Fig. 4.40
lower layer and four in the upper layer, This “?l““'ﬂiﬂl‘:ﬂ;‘p
arrangement has been shown in Fig. 4.41. andlbcp"hml u:'lur';'--

Most of the metals belonging to s-block
and d-block elements possess any one of the following closg
packing arrangemends: .

(i} Cubi¢ closed packed, (i) Hexagonal closed packed and: .
(1ii} Body-centred cubic packed. ) *

Examples:
Metals Structure
Mg, £n, Mo, ¥, Cd hep
Cu, Ag, Au, Ni, Pt copor foo
i

Li, Na, K, Rb, Cs, Ba

:r.-_-.



